Posit AI Weblog: Simple PixelCNN with tfprobability


We’ve seen fairly a couple of examples of unsupervised studying (or self-supervised studying, to decide on the extra right however much less
standard time period) on this weblog.

Typically, these concerned Variational Autoencoders (VAEs), whose enchantment lies in them permitting to mannequin a latent area of
underlying, impartial (ideally) elements that decide the seen options. A potential draw back will be the inferior
high quality of generated samples. Generative Adversarial Networks (GANs) are one other standard strategy. Conceptually, these are
extremely engaging because of their game-theoretic framing. Nevertheless, they are often tough to coach. PixelCNN variants, on the
different hand – we’ll subsume all of them right here underneath PixelCNN – are usually recognized for his or her good outcomes. They appear to contain
some extra alchemy although. Beneath these circumstances, what might be extra welcome than a straightforward manner of experimenting with
them? By TensorFlow Chance (TFP) and its R wrapper, tfprobability, we now have
such a manner.

This submit first offers an introduction to PixelCNN, concentrating on high-level ideas (leaving the main points for the curious
to look them up within the respective papers). We’ll then present an instance of utilizing tfprobability to experiment with the TFP
implementation.

PixelCNN rules

Autoregressivity, or: We’d like (some) order

The fundamental concept in PixelCNN is autoregressivity. Every pixel is modeled as relying on all prior pixels. Formally:

[p(mathbf{x}) = prod_{i}p(x_i|x_0, x_1, …, x_{i-1})]

Now wait a second – what even are prior pixels? Final I noticed one photos had been two-dimensional. So this implies we’ve got to impose
an order on the pixels. Generally this shall be raster scan order: row after row, from left to proper. However when coping with
shade photos, there’s one thing else: At every place, we even have three depth values, one for every of purple, inexperienced,
and blue. The unique PixelCNN paper(Oord, Kalchbrenner, and Kavukcuoglu 2016) carried via autoregressivity right here as properly, with a pixel’s depth for
purple relying on simply prior pixels, these for inexperienced relying on these identical prior pixels however moreover, the present worth
for purple, and people for blue relying on the prior pixels in addition to the present values for purple and inexperienced.

[p(x_i|mathbf{x}<i) = p(x_{i,R}|mathbf{x}<i) p(x_{i,G}|mathbf{x}<i, x_{i,R}) p(x_{i,B}|mathbf{x}<i, x_{i,R}, x_{i,G})]

Right here, the variant carried out in TFP, PixelCNN++(Salimans et al. 2017) , introduces a simplification; it factorizes the joint
distribution in a much less compute-intensive manner.

Technically, then, we all know how autoregressivity is realized; intuitively, it could nonetheless appear stunning that imposing a raster
scan order “simply works” (to me, not less than, it’s). Perhaps that is a type of factors the place compute energy efficiently
compensates for lack of an equal of a cognitive prior.

Masking, or: The place to not look

Now, PixelCNN ends in “CNN” for a motive – as typical in picture processing, convolutional layers (or blocks thereof) are
concerned. However – is it not the very nature of a convolution that it computes a mean of some types, wanting, for every
output pixel, not simply on the corresponding enter but in addition, at its spatial (or temporal) environment? How does that rhyme
with the look-at-just-prior-pixels technique?

Surprisingly, this downside is simpler to unravel than it sounds. When making use of the convolutional kernel, simply multiply with a
masks that zeroes out any “forbidden pixels” – like on this instance for a 5×5 kernel, the place we’re about to compute the
convolved worth for row 3, column 3:

[left[begin{array}
{rrr}
1 & 1 & 1 & 1 & 1
1 & 1 & 1 & 1 & 1
1 & 1 & 1 & 0 & 0
0 & 0 & 0 & 0 & 0
0 & 0 & 0 & 0 & 0
end{array}right]
]

This makes the algorithm sincere, however introduces a distinct downside: With every successive convolutional layer consuming its
predecessor’s output, there’s a constantly rising blind spot (so-called in analogy to the blind spot on the retina, however
positioned within the prime proper) of pixels which might be by no means seen by the algorithm. Van den Oord et al. (2016)(Oord et al. 2016) repair this
by utilizing two totally different convolutional stacks, one continuing from prime to backside, the opposite from left to proper.

Fig. 1: Left: Blind spot, growing over layers. Right: Using two different stacks (a vertical and a horizontal one) solves the problem. Source: van den Oord et al., 2016.

Conditioning, or: Present me a kitten

Up to now, we’ve at all times talked about “producing photos” in a purely generic manner. However the true attraction lies in creating
samples of some specified sort – one of many courses we’ve been coaching on, or orthogonal data fed into the community.
That is the place PixelCNN turns into Conditional PixelCNN(Oord et al. 2016), and it is usually the place that feeling of magic resurfaces.
Once more, as “normal math” it’s not exhausting to conceive. Right here, (mathbf{h}) is the extra enter we’re conditioning on:

[p(mathbf{x}| mathbf{h}) = prod_{i}p(x_i|x_0, x_1, …, x_{i-1}, mathbf{h})]

However how does this translate into neural community operations? It’s simply one other matrix multiplication ((V^T mathbf{h})) added
to the convolutional outputs ((W mathbf{x})).

[mathbf{y} = tanh(W_{k,f} mathbf{x} + V^T_{k,f} mathbf{h}) odot sigma(W_{k,g} mathbf{x} + V^T_{k,g} mathbf{h})]

(If you happen to’re questioning concerning the second half on the best, after the Hadamard product signal – we gained’t go into particulars, however in a
nutshell, it’s one other modification launched by (Oord et al. 2016), a switch of the “gating” precept from recurrent neural
networks, equivalent to GRUs and LSTMs, to the convolutional setting.)

So we see what goes into the choice of a pixel worth to pattern. However how is that call really made?

Logistic combination chance , or: No pixel is an island

Once more, that is the place the TFP implementation doesn’t observe the unique paper, however the latter PixelCNN++ one. Initially,
pixels had been modeled as discrete values, selected by a softmax over 256 (0-255) potential values. (That this really labored
looks as if one other occasion of deep studying magic. Think about: On this mannequin, 254 is as removed from 255 as it’s from 0.)

In distinction, PixelCNN++ assumes an underlying steady distribution of shade depth, and rounds to the closest integer.
That underlying distribution is a mix of logistic distributions, thus permitting for multimodality:

[nu sim sum_{i} pi_i logistic(mu_i, sigma_i)]

General structure and the PixelCNN distribution

General, PixelCNN++, as described in (Salimans et al. 2017), consists of six blocks. The blocks collectively make up a UNet-like
construction, successively downsizing the enter after which, upsampling once more:

Fig. 2: Overall structure of PixelCNN++. From: Salimans et al., 2017.

In TFP’s PixelCNN distribution, the variety of blocks is configurable as num_hierarchies, the default being 3.

Every block consists of a customizable variety of layers, referred to as ResNet layers as a result of residual connection (seen on the
proper) complementing the convolutional operations within the horizontal stack:

Fig. 3: One so-called "ResNet layer", featuring both a vertical and a horizontal convolutional stack. Source: van den Oord et al., 2017.

In TFP, the variety of these layers per block is configurable as num_resnet.

num_resnet and num_hierarchies are the parameters you’re almost definitely to experiment with, however there are a couple of extra you possibly can
take a look at within the documentation. The variety of logistic
distributions within the combination can be configurable, however from my experiments it’s finest to maintain that quantity reasonably low to keep away from
producing NaNs throughout coaching.

Let’s now see an entire instance.

Finish-to-end instance

Our playground shall be QuickDraw, a dataset – nonetheless rising –
obtained by asking individuals to attract some object in at most twenty seconds, utilizing the mouse. (To see for your self, simply take a look at
the web site). As of right now, there are greater than a fifty million cases, from 345
totally different courses.

Firstly, these knowledge had been chosen to take a break from MNIST and its variants. However similar to these (and plenty of extra!),
QuickDraw will be obtained, in tfdatasets-ready kind, through tfds, the R wrapper to
TensorFlow datasets. In distinction to the MNIST “household” although, the “actual samples” are themselves extremely irregular, and infrequently
even lacking important components. So to anchor judgment, when displaying generated samples we at all times present eight precise drawings
with them.

Making ready the info

The dataset being gigantic, we instruct tfds to load the primary 500,000 drawings “solely.”

To hurry up coaching additional, we then zoom in on twenty courses. This successfully leaves us with ~ 1,100 – 1,500 drawings per
class.

# bee, bicycle, broccoli, butterfly, cactus,
# frog, guitar, lightning, penguin, pizza,
# rollerskates, sea turtle, sheep, snowflake, solar,
# swan, The Eiffel Tower, tractor, practice, tree
courses <- c(26, 29, 43, 49, 50,
             125, 134, 172, 218, 225,
             246, 255, 258, 271, 295,
             296, 308, 320, 322, 323
)

classes_tensor <- tf$forged(courses, tf$int64)

train_ds <- train_ds %>%
  dataset_filter(
    perform(document) tf$reduce_any(tf$equal(classes_tensor, document$label), -1L)
  )

The PixelCNN distribution expects values within the vary from 0 to 255 – no normalization required. Preprocessing then consists
of simply casting pixels and labels every to float:

preprocess <- perform(document) {
  document$picture <- tf$forged(document$picture, tf$float32) 
  document$label <- tf$forged(document$label, tf$float32)
  checklist(tuple(document$picture, document$label))
}

batch_size <- 32

practice <- train_ds %>%
  dataset_map(preprocess) %>%
  dataset_shuffle(10000) %>%
  dataset_batch(batch_size)

Creating the mannequin

We now use tfd_pixel_cnn to outline what would be the
loglikelihood utilized by the mannequin.

dist <- tfd_pixel_cnn(
  image_shape = c(28, 28, 1),
  conditional_shape = checklist(),
  num_resnet = 5,
  num_hierarchies = 3,
  num_filters = 128,
  num_logistic_mix = 5,
  dropout_p =.5
)

image_input <- layer_input(form = c(28, 28, 1))
label_input <- layer_input(form = checklist())
log_prob <- dist %>% tfd_log_prob(image_input, conditional_input = label_input)

This tradition loglikelihood is added as a loss to the mannequin, after which, the mannequin is compiled with simply an optimizer
specification solely. Throughout coaching, loss first decreased shortly, however enhancements from later epochs had been smaller.

mannequin <- keras_model(inputs = checklist(image_input, label_input), outputs = log_prob)
mannequin$add_loss(-tf$reduce_mean(log_prob))
mannequin$compile(optimizer = optimizer_adam(lr = .001))

mannequin %>% match(practice, epochs = 10)

To collectively show actual and faux photos:

for (i in courses) {
  
  real_images <- train_ds %>%
    dataset_filter(
      perform(document) document$label == tf$forged(i, tf$int64)
    ) %>% 
    dataset_take(8) %>%
    dataset_batch(8)
  it <- as_iterator(real_images)
  real_images <- iter_next(it)
  real_images <- real_images$picture %>% as.array()
  real_images <- real_images[ , , , 1]/255
  
  generated_images <- dist %>% tfd_sample(8, conditional_input = i)
  generated_images <- generated_images %>% as.array()
  generated_images <- generated_images[ , , , 1]/255
  
  photos <- abind::abind(real_images, generated_images, alongside = 1)
  png(paste0("draw_", i, ".png"), width = 8 * 28 * 10, peak = 2 * 28 * 10)
  par(mfrow = c(2, 8), mar = c(0, 0, 0, 0))
  photos %>%
    purrr::array_tree(1) %>%
    purrr::map(as.raster) %>%
    purrr::iwalk(plot)
  dev.off()
}

From our twenty courses, right here’s a alternative of six, every exhibiting actual drawings within the prime row, and faux ones beneath.

Fig. 4: Bicycles, drawn by people (top row) and the network (bottom row).
Fig. 5: Broccoli, drawn by people (top row) and the network (bottom row).
Fig. 6: Butterflies, drawn by people (top row) and the network (bottom row).
Fig. 7: Guitars, drawn by people (top row) and the network (bottom row).
Fig. 8: Penguins, drawn by people (top row) and the network (bottom row).
Fig. 9: Roller skates, drawn by people (top row) and the network (bottom row).

We most likely wouldn’t confuse the primary and second rows, however then, the precise human drawings exhibit monumental variation, too.
And nobody ever mentioned PixelCNN was an structure for idea studying. Be happy to mess around with different datasets of your
alternative – TFP’s PixelCNN distribution makes it straightforward.

Wrapping up

On this submit, we had tfprobability / TFP do all of the heavy lifting for us, and so, might concentrate on the underlying ideas.
Relying in your inclinations, this may be a great scenario – you don’t lose sight of the forest for the bushes. On the
different hand: Must you discover that altering the offered parameters doesn’t obtain what you need, you may have a reference
implementation to begin from. So regardless of the end result, the addition of such higher-level performance to TFP is a win for the
customers. (If you happen to’re a TFP developer studying this: Sure, we’d like extra :-)).

To everybody although, thanks for studying!

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016. “Pixel Recurrent Neural Networks.” CoRR abs/1601.06759. http://arxiv.org/abs/1601.06759.
Oord, Aaron van den, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray Kavukcuoglu. 2016. “Conditional Picture Technology with PixelCNN Decoders.” CoRR abs/1606.05328. http://arxiv.org/abs/1606.05328.

Salimans, Tim, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. 2017. “PixelCNN++: A PixelCNN Implementation with Discretized Logistic Combination Probability and Different Modifications.” In ICLR.