Posit AI Weblog: Discrete Fourier Rework


Notice: This publish is an excerpt from the forthcoming guide, Deep Studying and Scientific Computing with R torch. The chapter in query is on the Discrete Fourier Rework (DFT), and is positioned partly three. Half three is devoted to scientific computation past deep studying.
There are two chapters on the Fourier Rework. The primary strives to, in as “verbal” and lucid a method as was potential to me, solid a lightweight on what’s behind the magic; it additionally exhibits how, surprisingly, you possibly can code the DFT in merely half a dozen strains. The second focuses on quick implementation (the Quick Fourier Rework, or FFT), once more with each conceptual/explanatory in addition to sensible, code-it-yourself components.
Collectively, these cowl way more materials than might sensibly match right into a weblog publish; due to this fact, please take into account what follows extra as a “teaser” than a completely fledged article.

Within the sciences, the Fourier Rework is nearly in all places. Acknowledged very usually, it converts knowledge from one illustration to a different, with none lack of info (if carried out accurately, that’s.) Should you use torch, it’s only a perform name away: torch_fft_fft() goes a method, torch_fft_ifft() the opposite. For the consumer, that’s handy – you “simply” have to know how one can interpret the outcomes. Right here, I need to assist with that. We begin with an instance perform name, enjoying round with its output, after which, attempt to get a grip on what’s going on behind the scenes.

Understanding the output of torch_fft_fft()

As we care about precise understanding, we begin from the only potential instance sign, a pure cosine that performs one revolution over the entire sampling interval.

Start line: A cosine of frequency 1

The way in which we set issues up, there might be sixty-four samples; the sampling interval thus equals N = 64. The content material of frequency(), the under helper perform used to assemble the sign, displays how we signify the cosine. Particularly:

[
f(x) = cos(frac{2 pi}{N} k x)
]

Right here (x) values progress over time (or house), and (ok) is the frequency index. A cosine is periodic with interval (2 pi); so if we would like it to first return to its beginning state after sixty-four samples, and (x) runs between zero and sixty-three, we’ll need (ok) to be equal to (1). Like that, we’ll attain the preliminary state once more at place (x = frac{2 pi}{64} * 1 * 64).

Let’s shortly verify this did what it was imagined to:

df <- knowledge.body(x = sample_positions, y = as.numeric(x))

ggplot(df, aes(x = x, y = y)) +
  geom_line() +
  xlab("time") +
  ylab("amplitude") +
  theme_minimal()
Pure cosine that accomplishes one revolution over the complete sample period (64 samples).

Now that we have now the enter sign, torch_fft_fft() computes for us the Fourier coefficients, that’s, the significance of the varied frequencies current within the sign. The variety of frequencies thought-about will equal the variety of sampling factors: So (X) might be of size sixty-four as effectively.

(In our instance, you’ll discover that the second half of coefficients will equal the primary in magnitude. That is the case for each real-valued sign. In such instances, you can name torch_fft_rfft() as a substitute, which yields “nicer” (within the sense of shorter) vectors to work with. Right here although, I need to clarify the overall case, since that’s what you’ll discover carried out in most expositions on the subject.)

Even with the sign being actual, the Fourier coefficients are complicated numbers. There are 4 methods to examine them. The primary is to extract the true half:

[1]  0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[57] 0 0 0 0 0 0 0 32

Solely a single coefficient is non-zero, the one at place 1. (We begin counting from zero, and should discard the second half, as defined above.)

Now wanting on the imaginary half, we discover it’s zero all through:

[1]  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 0 0 0 0

At this level we all know that there’s only a single frequency current within the sign, particularly, that at (ok = 1). This matches (and it higher needed to) the way in which we constructed the sign: particularly, as carrying out a single revolution over the entire sampling interval.

Since, in concept, each coefficient might have non-zero actual and imaginary components, usually what you’d report is the magnitude (the sq. root of the sum of squared actual and imaginary components):

[1]  0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[57] 0 0 0 0 0 0 0 32

Unsurprisingly, these values precisely mirror the respective actual components.

Lastly, there’s the section, indicating a potential shift of the sign (a pure cosine is unshifted). In torch, we have now torch_angle() complementing torch_abs(), however we have to keep in mind roundoff error right here. We all know that in every however a single case, the true and imaginary components are each precisely zero; however as a result of finite precision in how numbers are offered in a pc, the precise values will usually not be zero. As an alternative, they’ll be very small. If we take one in all these “pretend non-zeroes” and divide it by one other, as occurs within the angle calculation, large values may result. To stop this from occurring, our customized implementation rounds each inputs earlier than triggering the division.

section <- perform(Ft, threshold = 1e5) {
  torch_atan2(
    torch_abs(torch_round(Ft$imag * threshold)),
    torch_abs(torch_round(Ft$actual * threshold))
  )
}

as.numeric(section(Ft)) %>% spherical(5)
[1]  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[57] 0 0 0 0 0 0 0 0

As anticipated, there is no such thing as a section shift within the sign.

Let’s visualize what we discovered.

create_plot <- perform(x, y, amount) {
  df <- knowledge.body(
    x_ = x,
    y_ = as.numeric(y) %>% spherical(5)
  )
  ggplot(df, aes(x = x_, y = y_)) +
    geom_col() +
    xlab("frequency") +
    ylab(amount) +
    theme_minimal()
}

p_real <- create_plot(
  sample_positions,
  real_part,
  "actual half"
)
p_imag <- create_plot(
  sample_positions,
  imag_part,
  "imaginary half"
)
p_magnitude <- create_plot(
  sample_positions,
  magnitude,
  "magnitude"
)
p_phase <- create_plot(
  sample_positions,
  section(Ft),
  "section"
)

p_real + p_imag + p_magnitude + p_phase
Real parts, imaginary parts, magnitudes and phases of the Fourier coefficients, obtained on a pure cosine that performs a single revolution over the sampling period. Imaginary parts as well as phases are all zero.

It’s truthful to say that we have now no cause to doubt what torch_fft_fft() has carried out. However with a pure sinusoid like this, we will perceive precisely what’s occurring by computing the DFT ourselves, by hand. Doing this now will considerably assist us later, once we’re writing the code.

Reconstructing the magic

One caveat about this part. With a subject as wealthy because the Fourier Rework, and an viewers who I think about to differ broadly on a dimension of math and sciences training, my probabilities to fulfill your expectations, pricey reader, should be very near zero. Nonetheless, I need to take the danger. Should you’re an skilled on this stuff, you’ll anyway be simply scanning the textual content, searching for items of torch code. Should you’re reasonably acquainted with the DFT, you should still like being reminded of its interior workings. And – most significantly – should you’re relatively new, and even fully new, to this matter, you’ll hopefully take away (at the very least) one factor: that what looks as if one of many biggest wonders of the universe (assuming there’s a actuality someway comparable to what goes on in our minds) could be a marvel, however neither “magic” nor a factor reserved to the initiated.

In a nutshell, the Fourier Rework is a foundation transformation. Within the case of the DFT – the Discrete Fourier Rework, the place time and frequency representations each are finite vectors, not capabilities – the brand new foundation seems to be like this:

[
begin{aligned}
&mathbf{w}^{0n}_N = e^{ifrac{2 pi}{N}* 0 * n} = 1
&mathbf{w}^{1n}_N = e^{ifrac{2 pi}{N}* 1 * n} = e^{ifrac{2 pi}{N} n}
&mathbf{w}^{2n}_N = e^{ifrac{2 pi}{N}* 2 * n} = e^{ifrac{2 pi}{N}2n}& …
&mathbf{w}^{(N-1)n}_N = e^{ifrac{2 pi}{N}* (N-1) * n} = e^{ifrac{2 pi}{N}(N-1)n}
end{aligned}
]

Right here (N), as earlier than, is the variety of samples (64, in our case); thus, there are (N) foundation vectors. With (ok) operating via the idea vectors, they are often written:

[
mathbf{w}^{kn}_N = e^{ifrac{2 pi}{N}k n}
]
{#eq-dft-1}

Like (ok), (n) runs from (0) to (N-1). To grasp what these foundation vectors are doing, it’s useful to briefly swap to a shorter sampling interval, (N = 4), say. If we accomplish that, we have now 4 foundation vectors: (mathbf{w}^{0n}_N), (mathbf{w}^{1n}_N), (mathbf{w}^{2n}_N), and (mathbf{w}^{3n}_N). The primary one seems to be like this:

[
mathbf{w}^{0n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 0 * 0}
e^{ifrac{2 pi}{4}* 0 * 1}
e^{ifrac{2 pi}{4}* 0 * 2}
e^{ifrac{2 pi}{4}* 0 * 3}
end{bmatrix}
=
begin{bmatrix}
1
1
1
1
end{bmatrix}
]

The second, like so:

[
mathbf{w}^{1n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 1 * 0}
e^{ifrac{2 pi}{4}* 1 * 1}
e^{ifrac{2 pi}{4}* 1 * 2}
e^{ifrac{2 pi}{4}* 1 * 3}
end{bmatrix}
=
begin{bmatrix}
1
e^{ifrac{pi}{2}}
e^{i pi}
e^{ifrac{3 pi}{4}}
end{bmatrix}
=
begin{bmatrix}
1
i
-1
-i
end{bmatrix}
]

That is the third:

[
mathbf{w}^{2n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 2 * 0}
e^{ifrac{2 pi}{4}* 2 * 1}
e^{ifrac{2 pi}{4}* 2 * 2}
e^{ifrac{2 pi}{4}* 2 * 3}
end{bmatrix}
=
begin{bmatrix}
1
e^{ipi}
e^{i 2 pi}
e^{ifrac{3 pi}{2}}
end{bmatrix}
=
begin{bmatrix}
1
-1
1
-1
end{bmatrix}
]

And eventually, the fourth:

[
mathbf{w}^{3n}_N
=
begin{bmatrix}
e^{ifrac{2 pi}{4}* 3 * 0}
e^{ifrac{2 pi}{4}* 3 * 1}
e^{ifrac{2 pi}{4}* 3 * 2}
e^{ifrac{2 pi}{4}* 3 * 3}
end{bmatrix}
=
begin{bmatrix}
1
e^{ifrac{3 pi}{2}}
e^{i 3 pi}
e^{ifrac{9 pi}{2}}
end{bmatrix}
=
begin{bmatrix}
1
-i
-1
i
end{bmatrix}
]

We are able to characterize these 4 foundation vectors by way of their “pace”: how briskly they transfer across the unit circle. To do that, we merely have a look at the rightmost column vectors, the place the ultimate calculation outcomes seem. The values in that column correspond to positions pointed to by the revolving foundation vector at completely different time limits. Which means taking a look at a single “replace of place”, we will see how briskly the vector is shifting in a single time step.

Wanting first at (mathbf{w}^{0n}_N), we see that it doesn’t transfer in any respect. (mathbf{w}^{1n}_N) goes from (1) to (i) to (-1) to (-i); another step, and it will be again the place it began. That’s one revolution in 4 steps, or a step measurement of (frac{pi}{2}). Then (mathbf{w}^{2n}_N) goes at double that tempo, shifting a distance of (pi) alongside the circle. That method, it finally ends up finishing two revolutions total. Lastly, (mathbf{w}^{3n}_N) achieves three full loops, for a step measurement of (frac{3 pi}{2}).

The factor that makes these foundation vectors so helpful is that they’re mutually orthogonal. That’s, their dot product is zero:

[
langle mathbf{w}^{kn}_N, mathbf{w}^{ln}_N rangle = sum_{n=0}^{N-1} ({e^{ifrac{2 pi}{N}k n}})^* e^{ifrac{2 pi}{N}l n} = sum_{n=0}^{N-1} ({e^{-ifrac{2 pi}{N}k n}})e^{ifrac{2 pi}{N}l n} = 0
]
{#eq-dft-2}

Let’s take, for instance, (mathbf{w}^{2n}_N) and (mathbf{w}^{3n}_N). Certainly, their dot product evaluates to zero.

[
begin{bmatrix}
1 & -1 & 1 & -1
end{bmatrix}
begin{bmatrix}
1
-i
-1
i
end{bmatrix}
=
1 + i + (-1) + (-i) = 0
]

Now, we’re about to see how the orthogonality of the Fourier foundation considerably simplifies the calculation of the DFT. Did you discover the similarity between these foundation vectors and the way in which we wrote the instance sign? Right here it’s once more:

[
f(x) = cos(frac{2 pi}{N} k x)
]

If we handle to signify this perform by way of the idea vectors (mathbf{w}^{kn}_N = e^{ifrac{2 pi}{N}ok n}), the interior product between the perform and every foundation vector might be both zero (the “default”) or a a number of of 1 (in case the perform has a element matching the idea vector in query). Fortunately, sines and cosines can simply be transformed into complicated exponentials. In our instance, that is how that goes:

[
begin{aligned}
mathbf{x}_n &= cos(frac{2 pi}{64} n)
&= frac{1}{2} (e^{ifrac{2 pi}{64} n} + e^{-ifrac{2 pi}{64} n})
&= frac{1}{2} (e^{ifrac{2 pi}{64} n} + e^{ifrac{2 pi}{64} 63n})
&= frac{1}{2} (mathbf{w}^{1n}_N + mathbf{w}^{63n}_N)
end{aligned}
]

Right here step one straight outcomes from Euler’s formulation, and the second displays the truth that the Fourier coefficients are periodic, with frequency -1 being the identical as 63, -2 equaling 62, and so forth.

Now, the (ok)th Fourier coefficient is obtained by projecting the sign onto foundation vector (ok).

As a result of orthogonality of the idea vectors, solely two coefficients is not going to be zero: these for (mathbf{w}^{1n}_N) and (mathbf{w}^{63n}_N). They’re obtained by computing the interior product between the perform and the idea vector in query, that’s, by summing over (n). For every (n) ranging between (0) and (N-1), we have now a contribution of (frac{1}{2}), leaving us with a last sum of (32) for each coefficients. For instance, for (mathbf{w}^{1n}_N):

[
begin{aligned}
X_1 &= langle mathbf{w}^{1n}_N, mathbf{x}_n rangle
&= langle mathbf{w}^{1n}_N, frac{1}{2} (mathbf{w}^{1n}_N + mathbf{w}^{63n}_N) rangle
&= frac{1}{2} * 64
&= 32
end{aligned}
]

And analogously for (X_{63}).

Now, wanting again at what torch_fft_fft() gave us, we see we have been capable of arrive on the identical outcome. And we’ve realized one thing alongside the way in which.

So long as we stick with indicators composed of a number of foundation vectors, we will compute the DFT on this method. On the finish of the chapter, we’ll develop code that may work for all indicators, however first, let’s see if we will dive even deeper into the workings of the DFT. Three issues we’ll need to discover:

  • What would occur if frequencies modified – say, a melody have been sung at a better pitch?

  • What about amplitude modifications – say, the music have been performed twice as loud?

  • What about section – e.g., there have been an offset earlier than the piece began?

In all instances, we’ll name torch_fft_fft() solely as soon as we’ve decided the outcome ourselves.

And eventually, we’ll see how complicated sinusoids, made up of various elements, can nonetheless be analyzed on this method, offered they are often expressed by way of the frequencies that make up the idea.

Various frequency

Assume we quadrupled the frequency, giving us a sign that regarded like this:

[
mathbf{x}_n = cos(frac{2 pi}{N}*4*n)
]

Following the identical logic as above, we will categorical it like so:

[
mathbf{x}_n = frac{1}{2} (mathbf{w}^{4n}_N + mathbf{w}^{60n}_N)
]

We already see that non-zero coefficients might be obtained just for frequency indices (4) and (60). Selecting the previous, we acquire

[
begin{aligned}
X_4 &= langle mathbf{w}^{4n}_N, mathbf{x}_n rangle
&= langle mathbf{w}^{4n}_N, frac{1}{2} (mathbf{w}^{4n}_N + mathbf{w}^{60n}_N) rangle
&= 32
end{aligned}
]

For the latter, we’d arrive on the identical outcome.

Now, let’s make sure that our evaluation is appropriate. The next code snippet incorporates nothing new; it generates the sign, calculates the DFT, and plots them each.

x <- torch_cos(frequency(4, N) * sample_positions)

plot_ft <- perform(x)  p_imag) /
    (p_magnitude 

plot_ft(x)
A pure cosine that performs four revolutions over the sampling period, and its DFT. Imaginary parts and phases are still are zero.

This does certainly verify our calculations.

A particular case arises when sign frequency rises to the best one “allowed”, within the sense of being detectable with out aliasing. That would be the case at one half of the variety of sampling factors. Then, the sign will appear like so:

[
mathbf{x}_n = frac{1}{2} (mathbf{w}^{32n}_N + mathbf{w}^{32n}_N)
]

Consequently, we find yourself with a single coefficient, comparable to a frequency of 32 revolutions per pattern interval, of double the magnitude (64, thus). Listed below are the sign and its DFT:

x <- torch_cos(frequency(32, N) * sample_positions)
plot_ft(x)
A pure cosine that performs thirty-two revolutions over the sampling period, and its DFT. This is the highest frequency where, given sixty-four sample points, no aliasing will occur. Imaginary parts and phases still zero.

Various amplitude

Now, let’s take into consideration what occurs once we differ amplitude. For instance, say the sign will get twice as loud. Now, there might be a multiplier of two that may be taken exterior the interior product. In consequence, the one factor that modifications is the magnitude of the coefficients.

Let’s confirm this. The modification relies on the instance we had earlier than the final one, with 4 revolutions over the sampling interval:

x <- 2 * torch_cos(frequency(4, N) * sample_positions)
plot_ft(x)
Pure cosine with four revolutions over the sampling period, and doubled amplitude. Imaginary parts and phases still zero.

To date, we have now not as soon as seen a coefficient with non-zero imaginary half. To alter this, we add in section.

Including section

Altering the section of a sign means shifting it in time. Our instance sign is a cosine, a perform whose worth is 1 at (t=0). (That additionally was the – arbitrarily chosen – place to begin of the sign.)

Now assume we shift the sign ahead by (frac{pi}{2}). Then the height we have been seeing at zero strikes over to (frac{pi}{2}); and if we nonetheless begin “recording” at zero, we should discover a worth of zero there. An equation describing that is the next. For comfort, we assume a sampling interval of (2 pi) and (ok=1), in order that the instance is a straightforward cosine:

[
f(x) = cos(x – phi)
]

The minus signal might look unintuitive at first. But it surely does make sense: We now need to acquire a price of 1 at (x=frac{pi}{2}), so (x – phi) ought to consider to zero. (Or to any a number of of (pi).) Summing up, a delay in time will seem as a unfavorable section shift.

Now, we’re going to calculate the DFT for a shifted model of our instance sign. However should you like, take a peek on the phase-shifted model of the time-domain image now already. You’ll see {that a} cosine, delayed by (frac{pi}{2}), is nothing else than a sine beginning at 0.

To compute the DFT, we observe our familiar-by-now technique. The sign now seems to be like this:

[
mathbf{x}_n = cos(frac{2 pi}{N}*4*x – frac{pi}{2})
]

First, we categorical it by way of foundation vectors:

[
begin{aligned}
mathbf{x}_n &= cos(frac{2 pi}{64} 4 n – frac{pi}{2})
&= frac{1}{2} (e^{ifrac{2 pi}{64} 4n – frac{pi}{2}} + e^{ifrac{2 pi}{64} 60n – frac{pi}{2}})
&= frac{1}{2} (e^{ifrac{2 pi}{64} 4n} e^{-i frac{pi}{2}} + e^{ifrac{2 pi}{64} 60n} e^{ifrac{pi}{2}})
&= frac{1}{2} (e^{-i frac{pi}{2}} mathbf{w}^{4n}_N + e^{i frac{pi}{2}} mathbf{w}^{60n}_N)
end{aligned}
]

Once more, we have now non-zero coefficients just for frequencies (4) and (60). However they’re complicated now, and each coefficients are now not similar. As an alternative, one is the complicated conjugate of the opposite. First, (X_4):

[
begin{aligned}
X_4 &= langle mathbf{w}^{4n}_N, mathbf{x}_n rangle
&=langle mathbf{w}^{4n}_N, frac{1}{2} (e^{-i frac{pi}{2}} mathbf{w}^{4n}_N + e^{i frac{pi}{2}} mathbf{w}^{60n}_N) rangle
&= 32 *e^{-i frac{pi}{2}}
&= -32i
end{aligned}
]

And right here, (X_{60}):

[
begin{aligned}
X_{60} &= langle mathbf{w}^{60n}_N, mathbf{x}_N rangle
&= 32 *e^{i frac{pi}{2}}
&= 32i
end{aligned}
]

As common, we test our calculation utilizing torch_fft_fft().

x <- torch_cos(frequency(4, N) * sample_positions - pi / 2)

plot_ft(x)
Delaying a pure cosine wave by pi/2 yields a pure sine wave. Now the real parts of all coefficients are zero; instead, non-zero imaginary values are appearing. The phase shift at those positions is pi/2.

For a pure sine wave, the non-zero Fourier coefficients are imaginary. The section shift within the coefficients, reported as (frac{pi}{2}), displays the time delay we utilized to the sign.

Lastly – earlier than we write some code – let’s put all of it collectively, and have a look at a wave that has greater than a single sinusoidal element.

Superposition of sinusoids

The sign we assemble should be expressed by way of the idea vectors, however it’s now not a pure sinusoid. As an alternative, it’s a linear mixture of such:

[
begin{aligned}
mathbf{x}_n &= 3 sin(frac{2 pi}{64} 4n) + 6 cos(frac{2 pi}{64} 2n) +2cos(frac{2 pi}{64} 8n)
end{aligned}
]

I received’t undergo the calculation intimately, however it’s no completely different from the earlier ones. You compute the DFT for every of the three elements, and assemble the outcomes. With none calculation, nevertheless, there’s fairly a couple of issues we will say:

  • Because the sign consists of two pure cosines and one pure sine, there might be 4 coefficients with non-zero actual components, and two with non-zero imaginary components. The latter might be complicated conjugates of one another.
  • From the way in which the sign is written, it’s simple to find the respective frequencies, as effectively: The all-real coefficients will correspond to frequency indices 2, 8, 56, and 62; the all-imaginary ones to indices 4 and 60.
  • Lastly, amplitudes will outcome from multiplying with (frac{64}{2}) the scaling elements obtained for the person sinusoids.

Let’s test:

x <- 3 * torch_sin(frequency(4, N) * sample_positions) +
  6 * torch_cos(frequency(2, N) * sample_positions) +
  2 * torch_cos(frequency(8, N) * sample_positions)

plot_ft(x)
Superposition of pure sinusoids, and its DFT.

Now, how will we calculate the DFT for much less handy indicators?

Coding the DFT

Fortuitously, we already know what needs to be carried out. We need to venture the sign onto every of the idea vectors. In different phrases, we’ll be computing a bunch of interior merchandise. Logic-wise, nothing modifications: The one distinction is that typically, it is not going to be potential to signify the sign by way of just some foundation vectors, like we did earlier than. Thus, all projections will really need to be calculated. However isn’t automation of tedious duties one factor we have now computer systems for?

Let’s begin by stating enter, output, and central logic of the algorithm to be carried out. As all through this chapter, we keep in a single dimension. The enter, thus, is a one-dimensional tensor, encoding a sign. The output is a one-dimensional vector of Fourier coefficients, of the identical size because the enter, every holding details about a frequency. The central concept is: To acquire a coefficient, venture the sign onto the corresponding foundation vector.

To implement that concept, we have to create the idea vectors, and for every one, compute its interior product with the sign. This may be carried out in a loop. Surprisingly little code is required to perform the aim:

dft <- perform(x) {
  n_samples <- size(x)

  n <- torch_arange(0, n_samples - 1)$unsqueeze(1)

  Ft <- torch_complex(
    torch_zeros(n_samples), torch_zeros(n_samples)
  )

  for (ok in 0:(n_samples - 1)) {
    w_k <- torch_exp(-1i * 2 * pi / n_samples * ok * n)
    dot <- torch_matmul(w_k, x$to(dtype = torch_cfloat()))
    Ft[k + 1] <- dot
  }
  Ft
}

To check the implementation, we will take the final sign we analysed, and evaluate with the output of torch_fft_fft().

[1]  0 0 192 0 0 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[57] 64 0 0 0 0 0 192 0

[1]  0 0 0 0 -96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
[57] 0 0 0 0 96 0 0 0

Reassuringly – should you look again – the outcomes are the identical.

Above, did I say “little code”? In actual fact, a loop is just not even wanted. As an alternative of working with the idea vectors one-by-one, we will stack them in a matrix. Then every row will maintain the conjugate of a foundation vector, and there might be (N) of them. The columns correspond to positions (0) to (N-1); there might be (N) of them as effectively. For instance, that is how the matrix would search for (N=4):

[
mathbf{W}_4
=
begin{bmatrix}
e^{-ifrac{2 pi}{4}* 0 * 0} & e^{-ifrac{2 pi}{4}* 0 * 1} & e^{-ifrac{2 pi}{4}* 0 * 2} & e^{-ifrac{2 pi}{4}* 0 * 3}
e^{-ifrac{2 pi}{4}* 1 * 0} & e^{-ifrac{2 pi}{4}* 1 * 1} & e^{-ifrac{2 pi}{4}* 1 * 2} & e^{-ifrac{2 pi}{4}* 1 * 3}
e^{-ifrac{2 pi}{4}* 2 * 0} & e^{-ifrac{2 pi}{4}* 2 * 1} & e^{-ifrac{2 pi}{4}* 2 * 2} & e^{-ifrac{2 pi}{4}* 2 * 3}
e^{-ifrac{2 pi}{4}* 3 * 0} & e^{-ifrac{2 pi}{4}* 3 * 1} & e^{-ifrac{2 pi}{4}* 3 * 2} & e^{-ifrac{2 pi}{4}* 3 * 3}
end{bmatrix}
]
{#eq-dft-3}

Or, evaluating the expressions:

[
mathbf{W}_4
=
begin{bmatrix}
1 & 1 & 1 & 1
1 & -i & -1 & i
1 & -1 & 1 & -1
1 & i & -1 & -i
end{bmatrix}
]

With that modification, the code seems to be much more elegant:

dft_vec <- perform(x) {
  n_samples <- size(x)

  n <- torch_arange(0, n_samples - 1)$unsqueeze(1)
  ok <- torch_arange(0, n_samples - 1)$unsqueeze(2)

  mat_k_m <- torch_exp(-1i * 2 * pi / n_samples * ok * n)

  torch_matmul(mat_k_m, x$to(dtype = torch_cfloat()))
}

As you possibly can simply confirm, the outcome is similar.

Thanks for studying!

Photograph by Trac Vu on Unsplash